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Background: Gene transcription in eukaryotic cells is collectively controlled by a large panel of chromatin associated
proteins and ChIP-seq is now widely used to locate their binding sites along the whole genome. Inferring the
differential binding sites of these proteins between biological conditions by comparing the corresponding ChIP-seq
samples is of general interest, yet it is still a computationally challenging task.
Results: Here, we briefly review the computational tools developed in recent years for differential binding analysis
with ChIP-seq data. The methods are extensively classified by their strategy of statistical modeling and scope of
application. Finally, a decision tree is presented for choosing proper tools based on the specific dataset.
Conclusions: Computational tools for differential binding analysis with ChIP-seq data vary significantly with respect
to their applicability and performance. This review can serve as a practical guide for readers to select appropriate
tools for their own datasets.
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INTRODUCTION

Chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) has been extensively
used to determine the binding sites of chromatin
associated proteins and the enrichments for specific
histone modifications on a genome-wide scale [1,2].
One of the most important downstream analyses of ChIP-
seq data is to identify genomic regions with a significant
change in ChIP-seq signal across biological conditions
[3]. This analysis is a critical step towards understanding
the mechanism regulating dynamic changes of gene
expression during tissue development [4–6] and the onset
of diseases [7]. Specifically, identifying the genomic loci
differentially marked by histone modifications across cell
types has been widely used to search for cell type specific
cis-elements as well as the regulators associated with
these elements [4,8,9]. In addition, it has been revealed
that lineage master regulators can cooperate with cohesin

proteins and transcription factors in signaling pathways to
modulate their chromatin occupancy and establish lineage
specific gene expression programs [9–11].
In many previous studies, people simply used the

overlap between the peaks identified from different ChIP-
seq samples to define common and specific peaks [12–
14]. However, it has been suggested that the cell type
specific peaks defined by this approach may contain a
considerable fraction of false positives, and a rigorous
comparison based on statistical models specifically
designed for this purpose is more recommended [8,15].
In particular, it usually gives more reliable results to
perform ChIP-seq data analysis in a quantitative manner,
especially for cross-condition comparisons [8,9,16]. For
example, several recent studies suggested to quantita-
tively combine the ChIP-seq signal intensity of a peak,
sometimes called peak height, as well as the distance from
this peak to a candidate target gene to represent its
regulatory potential to the gene [16–18]. It has been
shown that such a quantitative measure can integrate with
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other observations to better infer the functional impact of
the protein’s chromatin binding being studied. Another
example is that Shao et al. performed a systematic
comparison of ChIP-seq data between different cell types,
and found that, for histone modifications like H3K4me3
and H3K27ac, quantitative changes of ChIP-seq signals
strongly correlate with the expression changes of target
genes as well as the binding of cell type-specific
regulators [8]. Following this direction, Xu et al.
suggested that, although in mammalian genomes distal
enhancer elements often have clearly higher cell type
specificity than proximal promoters, it is still important to
use the quantitative changes of associated histone
modifications to define a high-confidence set of cell
type specific enhancers, especially when the difference
between the cell types under comparison is mild [9].
Despite the importance of differential binding analysis

with ChIP-seq data and the increasing need of methods
for this analysis, it is still computationally challenging to
reliably assess the statistical significance of changes in
signal intensity on a genome-wide scale, due to the high
level of noise and variability intrinsic to ChIP-seq data.
More specifically, ChIP-seq is a multi-step experiment
where biases may be introduced at each step [19,20],
leading to a generally limited data reproducibility [21,22].
Among others, the amount of input material, efficiency of
antibody, sequencing quality and depth may vary
considerably from an experiment to another [19,20]. As
a result, ChIP-seq samples typically have quite different
signal-to-noise ratios, especially for those generated from
different batches and/or labs, which makes it extremely
difficult to quantitatively compare the signal intensities
between samples [8].
In recent years, quite a number of computational tools

have been developed to address the problem [3,15]. These
tools take advantage of different statistical techniques and
vary in the range of applicability. This review aims to
summarize existing computational tools for differential
binding analysis with ChIP-seq data, according to their
scope of application as well as strategy of statistical
modeling (Figures 1 and 2). For simplicity, we primarily
focus on the comparison of ChIP-seq samples between
two biological conditions, with or without replicates.
Besides, we assume the sequencing reads have been
appropriately mapped to a reference genome [23].

STRATEGIES FOR DIFFERENTIAL BIND-
ING ANALYSIS WITH ChIP-SEQ DATA

Peak calling for ChIP-seq data

Typically, a considerable proportion of the mapped reads
of a ChIP-seq sample are dispersed throughout the

genome, while the others cluster together constituting
reads-enriched regions, termed peaks (Figure 1, top)
[24,25]. To be noted, ChIP-seq reads falling outside of
peak regions are predominately contributed by back-
ground noise or non-specific binding, while the peaks
with significantly elevated ChIP-seq signal intensities
generally represent stable binding sites of the protein
being ChIPed or genomic regions heavily marked by a
specific histone modification. A number of algorithms
have been developed to identify significant peaks on a
genome-wide scale [25–27]. Here, we provide a brief
overview of the available tools for ChIP-seq peak calling.
One of the reasons is that a large number of computational
tools for differential binding analysis require users to
provide a set of pre-defined peaks for the ChIP-seq
samples under comparison and then focus on modeling
the ChIP-Seq signals at peak regions [8,28,29]. Another
reason is that quite several peak calling programs claimed
that they could also be applied to identify differential
peaks between two ChIP-seq samples by taking one of
them as input [25,26]. Thus, the basic concept and
strategies of ChIP-seq peak calling can serve as a valuable
reference for differential binding analysis.
To be noted, the characteristics of peaks, especially

their size, can differ substantially depending on the
protein or histone modification targeted in the experiment.
For example, the majority of transcription factors and
many histone modifications like H3K4me3 and H3K27ac
tend to have narrow peaks, with a size ranging from
several hundred to a few thousand base pairs [25]. MACS
has been widely used to perform peak calling on such
ChIP-seq samples, especially those for transcription
factors which are usually associated with sharp and
isolated peaks [24,25]. For some other histone modifica-
tions such as H3K9me3 and H3K36me3, they tend to
form broad genomic domains with diffusive ChIP-seq
signals, which can span up to hundreds or even thousands
of kilo base pairs [30,31]. There are computational tools
that are specifically devised to handle such situations. For
example, SICER is developed to identify large spatial
clusters of ChIP-seq reads [26], while RSEG utilizes a
hidden Markov model (HMM) to detect broad epige-
nomic domains with consecutively elevated ChIP-seq
signals [32]. Notably, both MACS and SICER accept a
treatment ChIP-seq sample and an optional input sample
as the negative control for peak calling. The latter is
highly recommended for a practical ChIP-seq experiment
design and can be used to account for local biases
resulting from read mappability, DNA repeats, local GC
content and so on [25].
Many studies choose to generate multiple ChIP-seq

samples for the same biological condition, with the aim to
assess the variability and reproducibility of ChIP-seq
signals. To make a full use of the replication, two
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strategies are usually employed to integrate the ChIP-seq
replicates and derive a single list of peak regions. One of
them directly performs a joint analysis over the replicates,
which has been shown to detect peak boundaries with
high precision [33]. The other strategy first calls peaks on
each individual sample, and then uses measurements such
as IDR (irreproducible discovery rate) to select the peak
regions with high reproducibility across replicates
[21,34].

Differential binding analysis based on pre-defined
peaks

Since peak regions with significantly elevated ChIP-seq
signals are often of the highest interest across the
whole genome, especially for the factors with sharp
binding peaks, a lot of computational tools choose to

perform differential binding analysis only on the peaks
identified from the ChIP-seq samples under comparison
[8,28,29,35]. To exploit such tools, users typically need to
start with peak calling on each ChIP-seq sample involved.
But, it should be noted that peak calling on each
individual sample is usually a fundamental step of
ChIP-seq data analysis and the obtained peaks could
also be used for other analyses [9]. Thus, it will be easy to
integrate the results of differential binding analysis with
pre-defined peaks with the other analyses. In the start of a
differential binding analysis with pre-defined peaks,
usually the peak regions of all the samples under
comparison are first merged into a consensus set of
peaks, which defines the search space where differential
ChIP-seq signals are expected to find (Figure 1, lower
left). In principle, these peaks serve as the reference genes
in a typical differential expression analysis with RNA-seq

Figure 1. General work flow of two popular strategies for differential binding analysis with ChIP-seq data.
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data [36,37]. Therefore, many solid statistical models
initially developed for calling differentially expressed
genes with RNA-seq data can then be adapted to ChIP-seq
data [38].
Biological replicates may not be available in practical

studies. In the extreme case, only one ChIP-seq sample is
available for each of two conditions. In this case, many
peak calling tools such as MACS and SICER can also be
used to identify differential peaks, by taking one of the
two samples as treatment and the other as negative control
[3,25]. Although these methods come up with a P value to
assess the statistical significance of ChIP-Seq signal
change at each detected differential peak, it should be
strongly emphasized that, without replication, there is no
way in principle to estimate biological variation in the
measured signal intensities and, hence, no meaningful
inference regarding the population can be made [39].
Therefore, any P value deduced in this context has only
exploratory value. On this account, it may make more
sense to measure the practical significance of signal
changes. MACS and SICER calculate a fold change of

ChIP-seq signal intensity for each candidate differential
peak by normalizing each sample on basis of its library
size, which is often inappropriate for ChIP-seq data as
different samples may have highly distinct signal-to-noise
ratios. Previously, MAnorm proposed to normalize two
ChIP-seq samples based on their common peak regions
[8]. The method introduces a hypothesis that, when two
ChIP-seq samples share a significantly larger number of
common peaks than expected by chance, the binding of
the targeted protein in the experiment at these common
peaks is very likely to be mediated by largely the same
mechanism. Hence, no global binding changes should be
expected at these peak regions. Based on this hypothesis,
MAnorm utilizes the traditional M-A plot, in which the
log2 fold ratios of signal intensities are plotted against the
average log2-transformed intensities between two sam-
ples, and fits a linear model between the M and A values
in their common peaks. Then, the linear model is used as a
reference to correct the M and A values of all peak
regions. Through that, the variation in signal-to-noise
ratio across samples is largely moderated, leading to a

Figure 2. A diagram to classify most of the computational tools for differential binding analysis discussed in the main
text, according to their strategy of statistical modeling and range of applicability.
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more robust estimation of the fold change of ChIP-seq
signal intensity [3,8]. Besides MAnorm, in the field of
RNA-seq data analysis there are methods that propose to
improve the estimation of fold change by taking into
account the large variance of M values calculated from
small read counts [37,40]. For example, DESeq applies a
variance-stabilizing transformation on RNA-seq count
data [37], making the M value comparable between
transcripts with different expression levels and, thus,
providing a more reasonable ranking of differentially
expressed genes. Another example is GFOLD, which
shrinks the M values calculated from small read counts to
0 under a Bayesian framework [40]. In principle, these
methods can be easily adapted to the differential binding
analysis with ChIP-seq data.
When ChIP-seq replicates are available, it becomes

feasible to model the biological variation at each peak
region besides the technical variation introduced during
sample preparation and sequencing. This strategy is
widely used in the computational tools developed for
differential expression analysis of RNA-seq data such as
edgeR and DESeq [36,37], which are inherited by
DiffBind and DBChIP by adapting their statistical models
to ChIP-seq data [28,38]. These tools introduce potential
sources of bias like sequencing depth into the model and
perform a normalization as well as a differential binding
analysis simultaneously. For the majority of other
methods, however, normalization between ChIP-seq
samples is required prior to conducting a differential
binding analysis (Figure 1, lower left). In principle, any
normalization approach can be adapted to these methods.
To normalize away the most concerning factor across
samples, which is sequencing depth, some methods rely
on the total or effective read counts [35]. Such approaches
tend to perform poorly when peak regions are highly
heterogeneous across samples [8]. Besides, peaks asso-
ciated with very large read counts may considerably bias
the normalization result. Normalization methods that
avoid using total read counts include those implemented
in THOR, MAnorm and DBChIP [8,15,28]. Basically,
these methods perform a normalization on basis of peak
regions that are supposed to be invariant across samples,
such as the promoter regions of house-keeping genes [15]
and the observed common peaks [8]. In general, ChIP-seq
signals in these regions are more reliable and stable than
in the others, and the methods are therefore resistant to
individual highly-represented peaks. Moreover, some
computational tools can handle additional sources
of bias by considering local GC-content, input subtrac-
tion and sequence mappability along the genome
[15,28,29,32]. In spite of these bias correction and signal
normalization procedures at the level of individual
samples, ChIP-seq data may still be associated with
serious batch effects, especially in the large-scale studies

where plenty of samples are involved. COMBAT and
ARSyN, which are initially developed to remove batch
effects in microarray data [41,42], have been shown to
work well with normalized sequencing data [39].
The first computational tools for differential analysis

with sequencing count data have used discrete distribu-
tions such as the Poisson and negative binomial
[28,35,37,43]. The negative binomial distribution can be
viewed as a gamma-Poisson hierarchy. From this
perspective, it explicitly models the underlying biological
variance, which is believed to be the primary cause of the
observed over-dispersion in sequencing data, in addition
to the technical variance expected from randomly
sampling from a pool of molecules [37]. On the other
hand, though it follows the nature of count data, the use of
discrete distributions is not a requisite for an accurate
differential binding analysis. In principle, applying
continuous distributions such as the normal distribution
to sequencing data analysis is valid as long as the mean-
variance relationship for counts is carefully modeled [44].
voom applies a log-transformation to the normalized read
counts while learning the global variance structure for
transformed values [44]. The method unlocks a repository
of statistical methodologies originally devised for micro-
array data, and has been shown to work well compared
with many approaches based on discrete distributions
[44,45]. In either case, nearly all the methods have made
an effort to reduce the uncertainty associated with peak-
specific variance estimates, considering that a highly
limited number of replicates is often the case. Among
others, a widely adopted strategy is to borrow information
between peaks [36,37,44], given the parallel structure in a
typical differential binding analysis in which the same
model is fitted to each peak. For example, DESeq
improves the variance estimates by fitting a mean-
variance curve and, hence, sharing information between
peaks with close signal levels [37]. voom adapts count
data to the empirical Bayes framework implemented in
limma and integrates information from all peak regions
into a common prior distribution of the variance
associated with each peak [44,46].

One-step differential binding analysis without the
requirement for pre-defined peaks

Sometimes users are mainly interested in the genomic
regions with significant ChIP-seq signal changes across
conditions. Thus, they may prefer to perform a one-step
differential binding analysis without doing peak calling
for each ChIP-seq sample in advance. Following this
direction, an alternative strategy of differential binding
analysis directly seeks for the changes in ChIP-seq signal
intensity throughout the whole genome, without the need
of calling peaks beforehand [15,32,47–50]. Approaches
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following this strategy address an obvious issue arising
from using peak calling based methods, in which the
search for differential binding sites is restricted to pre-
defined peak regions and artefacts may be introduced
when applying a certain cutoff to define peaks. These
approaches can be further classified into two categories.
One of them scans the whole genome with a sliding
window and consecutively performs the same statistical
test on the ChIP-seq signals at each window [49,50],
where the window size is usually selected to match the
typical size of a ChIP-seq signal enriched region. The
other class takes advantage of more sophisticated
segmentation techniques such as HMM [15,32,47,48],
where the genome is fragmented into sequences of bins
and a putative hidden state is then inferred for each bin to
indicate whether it is associated with differential ChIP-seq
signal (Figure 1, lower right). One of the reasons
accounting for the superiority of using an HMM is that,
for a target bin, it incorporates ChIP-seq signals lying in
the vicinity to improve the inference made for the bin.
These methods are therefore robust to the selection of bin
size and can achieve a wide range of resolution in
identifying differential binding sites.
A famous application of HMM in ChIP-seq data

analysis is ChromHMM, which takes a set of ChIP-seq
samples of multiple chromatin marks generated under the
same cellular condition as input, and systematically
detects their combinatorial binding patterns as representa-
tion of local chromatin states [51,52]. It has been applied
to a large panel of human cell types to derive a systematic
annotation of chromatin states along the whole genome
for each of them [53]. The method leverages the
correlation between different marks and, thus, signifi-
cantly improves the interpretation of observed ChIP-seq
signals. However, employing ChromHMM requires the
availability of multiple ChIP-seq samples for various
marks in a single condition, which seriously limits its
applicability. Other HMM based methods, such as THOR
[15], are specifically devised to call genomic regions of
differential ChIP-seq signals between a pair of biological
conditions. THOR accepts ChIP-seq samples for a single
mark from two biological conditions, and encodes the
significance as well as the direction of ChIP-seq signal
changes into the underlying states of an HMM (Figure 1,
lower right).
Despite the clear advantages of HMM based methods,

they usually make a stronger assumption on the observed
data than the methods focusing on peak regions. More
specifically, most of these methods train an HMM with a
very limited number of hidden states (typically 3 for a
comparison between two conditions; Figure 1, lower
right) to model the observed ChIP-seq signals [15,32,48],
which could be impractical for a real ChIP-seq dataset and
may result in a loss of flexibility. In particular, compared

with peak calling based methods, HMM based methods
may be less sensitive to quantitative changes in ChIP-seq
signal intensity between a pair of closely related
conditions (e.g., in studies of personal epigenomes [54]).

Practices for selecting the appropriate tools for a
custom differential binding analysis

In Figure 2, we use a diagram to depict the major
characteristics and applicability of the computational
tools introduced in this review. The diagram also serves as
a practical decision tree for researchers to choose proper
methods depending on their own dataset. Besides, there
are several points that we think are necessary to highlight.
Firstly, the computational tools based on pre-defined

peaks typically focus on modeling the ChIP-seq signals at
peak regions, and, thus, tend to be less sensitive to the
variation in signal-to-noise ratio across samples compared
to the methods involving background signals in modeling,
e.g., the HMM based methods. Hence, for most
transcription factors and the histone modifications
associated with narrow peaks (e.g., H3K4me3 and
H3K9/27ac), methods based on pre-defined peaks should
take the priority. On the other hand, HMM based methods
may better fit for analysis with the histone modifications
typically constituting broad domains (e.g., H3K9me3 and
H3K36me3), as the variations of local ChIP-seq signals
for these marks may not be quite informative and the
HMM based methods can borrow information from
flanking genomic regions to help identifying large
chromatin domains with a continuous change [47].
Besides, some HMM based methods can also be utilized
to detect subtle ChIP-seq signal changes within a broad
domain, such as the partial losses/gains of histone
modifications [15,48].
Secondly, for the peak calling procedure, JAMM is

recommended in the cases where biological replicates are
available [33]. It can integrate information from replicates
and determine peak boundaries with high precision.
Particularly, it could resolve neighboring narrow peaks
and, thus, increase the resolution of the downstream
differential binding analysis.
Finally, tools such as DESeq and edgeR are originally

designed for RNA-seq data, which are expected to have
less variability between samples than ChIP-seq data.
These methods believe sequencing depth is the only
concerning factor that needs to be normalized between
samples, and integrate the normalization procedure into
the differential analysis [36,37]. In the case where this
assumption does not hold (e.g., when the ChIP-seq
samples under comparison are generated from different
batches or labs), it is wiser to first extensively correct for
confounding factors and normalize ChIP-seq signal
intensities, prior to performing the differential binding
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analysis. The normalization approaches implemented in
MAnorm and THOR are recommended, as they are robust
to the variation of signal-to-noise ratios across samples

[8,15]. For reference, Table 1 summarizes the main
features and practical utility of each method shown in
Figure 2.

Table 1. Summary of the main characteristics and applicability of the computational tools shown in Figure 2.
Name Method description Characteristics and applicability

diffReps [49] Using a sliding window to scan the whole

genome

Multiple statistical tests are designed to handle both of the cases with and

without biological replicates

PePr [50] Using a sliding window to scan the whole

genome

The negative binomial test is used to assess differential binding; biological

replicates are required

ChIPDiff [47] Modeling the whole genome with a 3-state

HMM using the beta-binomial hierarchy as

emission

The Bayesian hierarchy implicitly augments the number of hidden states,

making the method sensitive to differential binding; it does not support

replicates

ODIN [48] Modeling the whole genome with a 3-state

HMM using the binomial or a mixture of

Poisson as emission

Refinement is performed for the specific type of ChIP-seq data, based on

whether they are associated with sharp peaks or broad domains; it does not

support replicates

THOR [15] An extension of ODIN using the negative

binomial as emission

THOR extends ODIN by supporting biological replicates and providing a

series of procedures for bias correction and normalization

RSEG [32] Using an HMM to identify broad domains

with consecutively elevated ChIP-seq

signals

The method accepts a treatment sample and an optional input sample as

control, suited for histone modifications constituting broad domains such as

H3K9me3 and H3K36me3

SICER [26] Leveraging enrichment information from

neighboring regions to identify chromatin

domains of enriched ChIP-seq signals

Similar to RSEG, except that the resolution of chromatin domains identified

by SICER is explicitly specified by users

MACS [25] Using the Poisson distribution with a

dynamic background level to call ChIP-seq

peaks

The dynamic background is used to account for biases of local chromatin

regions, suited for most transcription factors and histone modifications

associated with sharp peaks

JAMM [33] Incorporating information from replicate

samples to perform peak calling

The method calls peaks jointly on replicates and, thus, improves the

precision for determining peak boundaries

MAnorm [8] Normalizing two ChIP-seq samples

based on their common peak regions

The method does not assume that the genome-wide distribution of ChIP-seq

signal intensities is invariant across samples and, thus, shows a robust

behavior; it is suitable for ChIP-seq samples sharing a significant number of

peaks

GFOLD [40] Given two ChIP-seq samples, modeling the

distribution of fold changes in signal levels

under a Bayesian framework

GFOLD shrinks considerably a fold change calculated from small read

counts to 1, leading to a more reliable ranking of differential peaks

edgeR [36] Modeling raw counts using the negative

binomial distribution and identifying

differential peaks; originally developed

for RNA-seq data

The method incorporates information from all peaks to estimate the

common dispersion parameter, leading to a robust behavior even with the

minimal level of replication

DESeq [37] Modeling raw counts using the negative

binomial distribution and identifying

differential peaks; originally developed

for RNA-seq data

DESeq generalizes edgeR by allowing an arbitrary mean-variance relation-

ship and, thus, is more adaptive to different datasets

DBChIP [28] Using a generalized linear model with the

negative binomial distribution to detect

differential peaks

DBChIP is specifically designed for ChIP-seq samples of transcription

factors; it can handle experiment designs of arbitrary complexity (not

limited to two-condition comparisons)

ChIPComp [29] Using a generalized linear model with the

Poisson distribution to detect

differential peaks

ChIPComp is suited for both sharp peaks and broad domains; it can handle

experiment designs of arbitrary complexity

voom [44] Converting count data into normalized

continuous values and entering them into the

limma package [46] to perform a differential

analysis; originally developed for RNA-seq

data

voom aims to remove the heteroscedasticity intrinsic to count data by

learning the mean-variance relationship and introducing a precision weight

for each observation; it unlocks a large repository of tools originally

designed for continuous measurements, including the limma [46]
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OUTLOOK

ChIP-seq has become the standard technology for
determining transcription factor binding sites and histone
modification enrichments on a genome wide scale, and
the tools for its differential binding analysis are continu-
ing to evolve. Despite the importance of this analysis, the
agreement between the results obtained by applying
different tools could be surprisingly low [3]. This
observation strongly stresses the importance of choosing
proper methods based on the specific experimental setting
and application scenario. In addition, analytic challenges
can emerge under certain contexts. Here we take two
scenarios as examples to illustrate the point.
Methods for ChIP-seq data normalization are usually

based on the genomic loci with signal levels that are
expected to be invariant across samples [8,15], or the
assumption that the majority of the loci being analyzed
are not differentially bound [28,37]. Such methods,
however, may not be appropriate for the case where a
global change of chromatin binding takes place (e.g.,
when an enzyme catalyzing the histone modification
under comparison is functionally depleted from the cells)
[55]. ChIP-seq data normalization in such cases is difficult
to accomplish, due to the lack of “invariant” loci. To our
knowledge, no computational tools are currently available
to resolve this problem. Recently, spiking experiment was
proposed to specifically deal with this problem [55]. In the
experimental procedure, a constant, low amount of
chromatin sample from a foreign species is added to the
chromatin samples of interest prior to the immunopreci-
pitation step. Then, this ‘‘spike’’ genome is used as an
internal reference for adjusting ChIP-seq signal levels
across samples.
A universal technical problem associated with analyz-

ing count data is that the mathematical theory of discrete
distributions (e.g., the Poisson and negative binomial
distributions) is far less tractable than that of the normal
distribution, which seriously limits the type of analysis
that can be performed on sequencing data. For example, a
large number of statistical methods based on the normal
distribution have been developed to analyze intensity data
from microarrays [44], including those for detecting
differential expressions [46], modeling random effects
[56], testing gene sets [57,58] and so on. However, most
of the tools developed for RNA-seq and ChIP-seq data
aim at the differential analysis, and only a few of them can
handle complicate experiment designs (see Table 1). To
re-use the statistical models originally devised for
microarray data analysis, voom is proposed to transform
sequencing tag counts into the values showing a
continuous manner that can be modeled by the normal
distribution [44]. These transformed values can then be
input to the models for analyzing microarray signal

intensities. The normalization and variance structure
learning procedures implemented in voom, however, are
specifically tailored for RNA-seq data, which are
supposed to have less variability and lower noise level
than ChIP-seq data. For future methodology studies, a
similar method suited for ChIP-seq data is under
expectation.
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